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NUMERICAL-ANALYTICAL MODELING OF HEAT TRANSFER 

BETWEEN A LAMINAR FLOW AND HIGHLY PERMEABLE ROUGHNESS 

Ya. Ya. Karchev and E. A. Gaev UDC 532.517.2:536.24 

A mathematical model is proposed for the thermal interaction of a laminar flow 
with a layer of small stationary streamlined obstacles. Numerical and analytic- 
al investigations exhibit characteristic zones of the flow. 

A concept that has proved useful for the solution of a number of practical problems [1-4] 
is the notion of highly permeable roughness (HPR), which we interpret in the present study as 
a plane layer 0 & x < =, 0 & z & h randomly filled with stationary streamlined obstacles. We 
assume for definiteness that the obstacles are nondeformable spheres of diameter d, which is 
much smaller than the thickness h of the HPR. Their concentration is small enough that hydro- 
dynamic and thermal interaction does not take place between them. 

Let an unbounded viscous fluid flow with temperature-independent properties move along 
the HPR. The intensity of interaction of the flow with the HPR is determined by the local 
velocity U(z) of the flow relative to the obstacles, the local temperature difference O--~ be- 
tween the fluid and the obstacles, and the concentration (number density) n of the obstacles 
per unit volume. Owing to the smallness of the concentration, 3p/Sz = 0. A mathematical 
model of the flow produced by the HPR can be written in the form of boundary-layer equations 
with source terms. The latter have a discontinuity at the line of demarcation between the 
hindered and external flows, z = h [I, 2]: 

f =/pk v, (0 - -  S, 0 z h, 
i = ( 1 )  

[ O, [ O, z > h .  

The drag coefficient k (m3/sec) of the obstacles is assumed to be constant. For small Reynolds 
numbers Re' = U~d/v < i, e.g., k = 3~vd (Stokes' law). Analogously, ~ = const and does not 
depend on the flow velocity. The hydrodynamic interaction of a flow with HPR has been inves- 
tigated in our previous work. Here we turn our attention to the heat-transfer problem. 
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We introduce the dimensionless variables 

- -  z - -  x - -  U V 
z = - - ,  x = - - ,  U = - - , V = R e - -  

h 1Re h U Uoo 

~ ) =  0 - - 0 o  , ~ ' . _  e - - O o  

O| - -  0o 0 - -  0 o 

where Re = U~h/v. 
designating dimensionless symbols is dropped from now on) 

( 2 )  

Then in the HPR layer 0 S z S i the problem acquires the form (the overbar 

OU OU O~U 
U + V - - -  AU, 

Ox Oz Oz ~ 

U ,00 + V  
Ox 

OU OV 
+ ~ 0 ,  

Ox Oz 

z 

a o  1 o~o ( 3 )  
- - -  A ~ ( O - - ~ ) ,  

0z Pr • 2 

= 0  U = V = @ = O ,  

x = 0 U = 0 = 1. 

in  t h e  f r e e - s t r e a m  f l o w  o u t s i d e  t h e  HPR, z > 1, bu t  
At a large distance from the HPR (z + ~) the velocity 

The same boundary-layer equations hold 
without the source terms (A = At = 0). 
and temperature of the flow are equal to unity: U = O = i. Problem (3) contains three dim- 
ensionless groups : 

A knh~" A~ mzSh~ "; ') 
, = - - ,  Pr=-- (4 

v c,ov a 

In the variables (2) the boundary conditions for the velocity and temperature become identi- 
cal. The dimensionless heat flux is conveniently introduced in the form 

- qh dO 
q - -  ~ (O~ - -  @0) - -  d z  

The n u m e r i c a l  i n v e s t i g a t i o n  i s  b a s e d  on a t w o - l a y e r  s i x - p o i n t  i m p l i c i t  d i f f e r e n c i n g  
scheme [ 5 ] .  The t h e r m a l  r e g i m e  i s  computed  a f t e r  s o l u t i o n  o f  t h e  d y n a m i c a l  p r o b l e m .  The 
p h y s i c a l  p a r a m e t e r s  n ,  k ,  a and ,  h e n c e  t h e  d i m e n s i o n l e s s  g r o u p s  A and At ,  a r e  assumed t o  be  
c o n s t a n t .  

1. L e t  t h e  t e m p e r a t u r e  o f  t h e  o b s t a c l e s  be  h e l d  c o n s t a n t  and e q u a l  t o  t h e  w a i l  t e m p e r a -  
t u r e :  {> = 0. Then i t  i s  e v i d e n t  f rom e q u a t i o n s  (3 )  t h a t  t h e  v e l o c i t y  and t e m p e r a t u r e  p r o -  
files will coincide under the condition A = At, Pr = 1 (Reynolds analogy). The calculated 
profiles for this case are shown in Fig. in. The variation of the profiles with increasing 
coordinate x mirrors the transformation of the flow by the HPR. The flow is heated uniformly 
in the initial cross section x = 0. As the flow progresses along the HPR and interacts with 
the obstacles and the wall surface, it loses its thermal energy. For A = At = 0 (absence of 
the HPR, n = 0) we would have an ordinary thermal boundary layer on a cold surface. The zone 
of influence of the HPR and the wall (outer boundary layer) expands along the path of the mo- 
tion. As a result of the exchange of energy between the flow layers, the flow acquires a 
transverse heat flux (dashed curves in Fig. I) from the heated outer flow into the depth of 
the HPR. This process affects only the upper levels of the HPR at small x, but then it pene- 
trates deeper and deeper and in a number of cases reaches the lower level z = 0. The influx 
of thermal energy merely counteracts the temperature drop of the flowing medium at first, but 
at large x equilibrium sets in between the energy influx and the energy sink created by the 
obstacles. Evidence of this fact is found in the bulging of the profiles in the interior of 
the HPR layer and their tendency toward a certain limit. 

Thus, the thermal transformation of the flow is determined by three processes: the heat 
sink at the obstacles, the wall sink, and the replenishment of thermal energy from the outer 
flow. The pattern of the effects involved here stands out more sharply if the influence of 
the wall is excluded. Accordingly, we consider another HPR model, in which the layer of ob- 
stacles -h < z _-< h is suspended in the flow. Then the line z = 0 takes the role of a symmetry 
axis, on which the following boundary conditions hold: 
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Fig. i. Calculated profiles: velocity and temperature (solid 
curves); friction and heat flux (dashed curves) in the case of 
the Reynolds analogy A = At, Pr = 1 at various distances from 
the start of the HPR layer, A = i. a) Presence of a wall at the 
lower level of the HPR; b) HPR suspended in the flow. i) x.102 = 
1, 2) 2, 3) 5, 4) 10, 5) 20, 6) 40, 7) 80, 8) 160, 9) 3 2 0 .  

Fig. 2. Calculated velocity (dashed curves) and temperature 
(solid curves) profiles at various distances x from the start 
of the HPR for A = 1 and: At = i, Pr = 0.i; b) At = i0, Pr = 
i. i) x.102; 2) 20; 3) 160. 

OU O0 =0, V = O ,  --=0. 
z = 00z ,92 (5) 

The calculated profiles for such a HPR are shown in Fig. lb. The variation of the flow 
in this case takes place under the action of the transfer of thermal energy by the obstacles 
and its admission from outside the HPR. The strictly vertical parts of the profiles refer to 
the regions of the HPR where only a thermal energy sink is observed and the influence of the 
outer flow is absent [q(z) = 0, dashed curves]. The zone unaffected by the influence of the 
outer flow is situated above and below the axial line z = 0 and narrows with increasing x as 
a result of the boundary layer, which grows downward from the HPR level z = i. Equilibrium 
between the sink and influx of thermal energy sets in at large x, resulting in stabilization 
of the profile O(x, z) with respect to the variable x. 

The zone in which energy is not admitted [q(z) = 0] has been called the "potential core" 
in the analysis of the hydrodynamic flow pattern. When a wall is present at the lower level 
of the HPR, the "potential core" narrows more rapidly, because the influence of the upper 
boundary layer is augmented by that of the wall boundary layer. The flow zone 0 & x ~ L, 
where the "potential core" exists, is called the initial zone. The zone characterized by 
stabilization of the profiles in the interior of the HPR is the main zone. It can be assumed 
with a certain fractional error that the main zone is situated immediately after the initial 
zone, i.e., in the inverval L ~ x < ~. 

The pattern is the same in principle for other values of the parameters of the problem. 
Figure 2a shows how the temperature profiles vary for different values of Pr. They become 
separate from the velocity profiles (which are represented by dashed curves), and the Reynolds 
analogy breaks down. For Pr < 1 the outer thermal boundary layer grows more rapidly than the 
dynamical boundary layer, characterizing the quantity i/Pr as the rate of thermal energy 
transfer between the flow and the HPR. 

The variation of At also violates the analogy between the hydrodynamic and thermal pro- 
cesses (Fig. 2b). An analysis of extreme cases exhibits the tendency of the flow pattern to 
vary as At is varied. The case At = 0 has the physical significance, according to (4), that 
the heat-transfer coefficient ~ of the obstacles is equal to zero. With a decrease in At, 
therefore, the curves approach the limit 0 = i. The flow pattern becomes reminiscent of a 
thermal boundary at the surface z = 0. The difference is only a consequence of the difference 
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in the velocity distributions U(x, z) and V(x, z) in the case of a boundary layer and in the 
investigated problem, since A # 0. 

The case At § ~ corresponds to a very small specific heat of the flowing fluid: c + 0. 
Heat transfer to the obstacles therefore causes the temperature to drop to zero. Consequent- 
ly, an increase in At is accompanied by the tendency of the temperature profile in the HPR 
layer to the limit @ ~ 0, 0 ~ z % !. The limiting flow resembles a thermal boundary layer on 
the cold surface z = i. A comparison of Fig. 2b with Fig. la confirms these conclusions as 
to the influence of the parameter At. The foregoing discussion characterizes this parameter 
as the rate of absorption of thermal energy of the flow in the interior of the HPR. 

Depending on the relationship of the parameter A, the input rate of thermal energy I/Pr, 
and its absorption rate At, the situation is possible where the thermal influence of the 
outer flow is felt only in the upper levels of the HPR, ~ ~ z ~ i, so that the temperatureof 
the flowing medium is equal to zero below the level z = ~. The corresponding analytical case 
is shown in Fig. 2b. The thermal-energy penetration depth ~ = 0.53 for it. This has the 
practical implication that devices with such parameters will be inefficient. 

2. Based on our knowledge of the characteristic mechanisms involved in the initial and 
main flow zones, certain analytical estimates can be obtained for them. 

In the "potential core" region of the initial zone, a vertical variation of the flow char- 
acteristics does not take place, and ~/3z = 0. This assumption enables us to simplify the 
equations of motion nd energy: 

U dU ~ _ A U ,  U dO _ At@ ( 6 )  
dx dx 

(0 = 0). The first equation gives the velocity decay law in the potential core inside the 
HPR: U = i - Ax for 0 & x ~ L and U = 0 for x ~ L. Here the quantity 

L = 1/A --  ( 7 )  
knh  2 

is the approximate length of the hydrodynamic initial zone. Making use of this fact, from the 
second equation (6) we obtain the temperature decay law in the flow: 

0 = (1 - -  Ax) ARIA, ( 8 )  

where At/A = ~S/cok. 

For At = A the lengths of the thermal and dynamical zones coincide and are expressed by 
Eq. (7). For At > A the thermal initial zone is shorter than the hydrodynamic initial zone, 
and its length is estimated by the formula 

Lt = (1 .-- ~A/At)/A, ( 8 ) 

where ~ = 0.05. For At/A = 5, e.g., the ratio of the two lengths Lt/L = 0.45. Equations (7) 
and (8) show, in addition, that stabilization of the hydrodynamic and thermal processes sets 
in more rapidly, the greater the concentration of obstacles in the HPR and the greater its 
height. The Prandtl number does not exert any influence in the initial zone. 

The main zone, in contrast, is typified by independence of the velocity and tempera- 
ture profiles from the coordinate x. Under this assumption problem (3) acquires the simpler 
form 

U"--AU = O, @"- -AtPr  ( O - - ~ )  = O, 

z = O  U = O = O .  (9)  

It is seen that the hydrodynamic parameter A and the initial temperature profile do not af- 
fect the thermal processes in this part of the flow. These processes are determined by the 
single dimensionless parameter m2 = At/Pr = ~nShi/l. The hydrodynamics of the stabilized 
flow has been investigated in [I], and the heat transfer in [2]. The solution of the thermal 
problem can be written in the form 

sh~z  
O = O h - -  ( 1 0 )  

sh 

Here  t h e  f l o w  t e m p e r a t u r e  a t  t h e  u p p e r  l e v e l  o f  t h e  HPR Oh = O(x,  1) i s  an  a d d i t i o n a l  p a r a m -  
e t e r ,  w h i c h  m u s t  be  d e t e r m i n e d  f rom t h e  c a l c u l a t i o n  o f  t h e  b o u n d a r y  l a y e r  o v e r  t h e  s u r f a c e  
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Fig. 3. Calculated velocity and temperature 
profiles for various thermal regimes of the 
HPR. a) Different temperatures of the ob- 
stacles and the wall; b) regulated heat re- 
lease from the obstacles, A = At = i. i) 
x ' l O  = = 2; 2) 5, 3) 10, 4) 20, 5) 40,  6) 80, 
7) 16o. 

z = i. Equation (i0) can be used to estimate analytically the HPR depth z = ~ to which therm- 
al energy from the outer flow penetrates: 

I I 
l ~ Arsh(~sh o) ~ 1 + l n ~ ,  (11)  

where  t h e  q u a n t i t y  E = 0 ( s  and can be t a k e n  e q u a l  t o  E = 0 . 0 5 .  For  example ,  f o r  m = 10, 
thermal energy from the outer flow penetrates the interior of the HPR only to the level Z = 
0.70, below which O ~ 0. 

The foregoing discussion is also valid when the HPR is suspended in the flow, as disting- 
uished by condition (5). Its temperature profile, stabilized in the main zone, has the form 

ch~z 
0 = O h ~  

c h o  

For large values of m it differs very little from the profile (i0) because, as we infer from 
(ii), the flow temperature is equal to zero in a certain region 0 & z ~ s above the wall, and 
the solution is not affected by it. 

The analytical relations (i0) and (ii) for the main zone are well corroborated by the 
numerical calculations. The expressions (7) and (8) for the length of the initial zone are 
valid only for large values of A and At/A, for which the kinetic and thermal energies of the 
outer flow penetrate the HPR to comparatively shallow depths. On the whole, however, these 
expressions do not completely characterize the influence of the outer flow on the processes 
taking place in the interior of the HPR and can therefore only be used as approximations. 

3. In a number of problems the temperature of the obstacles differs from the wall tem- 
perature. In the dimensionless variables (2) this means that @ = const # 0 in equations (3). 
The calculation of this model is illustrated in Fig. 3a for the case of a wall temperature 
different from the HPR and free-stream temperatures: ~ = -0.5. The analysis of the flow pat- 
tern, which is considerably more complicated than the case @ = 0, can be carried out by the 
analytical methods proposed for the initial and main zones. In the former, the temperature 
drop along the flow obeys the law 8 = @ + (i - Ax) Ai/A. The temperature profile, stabilized 
in the main zone 

O =  Oh sh~  [ ] --sh~ -~ ~ ( 1 - -  ch oz) - -  ( 1 - -  ch m) sh~z_~_~_ ' 

can have an inflection point. The profile bends toward the limit 0=8. 

Another interesting case is control of the thermal regime of the HPR in such a way that 
the quantity of heat admitted to its elements is held constant; in wind tunnel experiments, 
e.g., the voltage and current passed through the HPR model are set. Then the power i0 of the 
distributed heat release (i) is constant, so that the source term in (3) retains a constant 
value At(O - 8) = i0, while the temperature of the obstacles is related one-to-one with the 
local temperature of the flowing medium by the algebraic expression 

~ @ - - i o l A t ,  

i.e., varies along the height of the HPR. In the initial zone the free-stream temperature de- 
cays according to the law 
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@=i-- i0 ln (1 - -Ax) .  
A 

A parabolic temperature profile is formed in the main zone: 

O = Ohz + 1 - - i P r z ( z - -  1), (12)  
2 

w h e r e i n  t h e  p a r a m e t e r  Oh = 0 (1 )  must  be d e t e r m i n e d  by a n a l y z i n g  t h e  o u t e r  boundary  l a y e r .  Th i s  
type of flow pattern is shown in Fig. 3b for a special analytical solution. The heat sink 
created by the obstacles in this problem is so strong that the temperature profiles acquire 
a pronounced concavity. The �9 profile 6, which is already close to the stabilized profile, is 
very accurately described by Eq. (12). 

NOTATION 

x, z, longitudinal and transverse coordinates; U, V, longitudinal and transverse flow vel- 
ocities; 0, density; ~, v, dynamic and kinematic viscosities; c, specific heat of the obstacles; 
0, flow temperature; ~, temperature of the obstacles; I, a, thermal conductivity and thermal 
diffusivity; ~, heat-transfer coefficient, J/mi.K.sec; ~, viscous friction; q = -180/8z, vertic- 
al heat flux, J/mi.sec; k, drag coefficient of obstacles; h, thickness of layer of obstacles 
(HPR); d, S = ~d 2, diameter and surface area of individual obstacle; n, concentration of ob- 
stacles; f, i, source functions of distributed force and heat; Re = U~h/~, Reynolds number; 
Re' = U=d/v, local Reynolds number; Pr, Prandtl number; A, m, dimensionless parameters; s 
thermal-energy penetration depth; L, length of initial zone; i, power of distributed heat re- 
lease. Indices: ~, free-stream (z + =) values of velocity and temperature; 0, values of tem- 
perature at wall; h, values of temperature at upper boundary of the layer of obstacles; t, heat- 
transfer process. 

i. 

. 

o 

4. 

5. 
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